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Lothar Scḧafer, Andrea Ostendorf and Johannes Hager
Fachbereich Physik der Universität Essen, 45117 Essen, Germany

E-mail: lsphy@next5.Theo-Phys.Uni-Essen.DE

Received 2 June 1999

Abstract. Segment directions in a self-repelling polymer chain are expected to show nontrivial
universal long-range correlations. We verify this hypothesis to two-loop order of renormalized
perturbation theory and we calculate the scaling function using theε-expansion to orderε2. The
result is well confirmed by simulations of the Domb–Joyce model on a simple cubic lattice.
Furthermore, it explains previous simulation results. Our results have consequences for the
interpretation of the persistence length in screened polyelectrolytes.

1. Introduction

The conformation of an uncharged and flexible chain molecule in a good solvent shows a
highly nontrivial structure. An indication of this structure is the well known power law found
for the dependence of the mean-squared end-to-end distanceR2

e of an isolated chain on the
chain lengthn, i.e., on the number of the chain segments:

R2
e (n) ∼ n2ν n→∞. (1.1)

The exponentν only depends on the dimensionalityd of the system and in three dimensions
takes a valueν ≈ 0.588. The power law (1.1) indicates that the polymer configuration behaves
approximately as a statistical fractal of fractal dimensiondf = 1/ν. (For an introduction into
the modern theory of polymer solutions we refer the reader to [1,2].)

A characteristic feature of all fractals is the property of self-similarity. Roughly speaking,
fractals look the same on any scale. For polymer chains this property shows up most directly
in a study of internal correlations [3, 4]. We describe the microscopic chain configuration by
the set of all bead positionsrj , j = 0, . . . , n, such that segmentj connects beadj −1 to bead
j . A measure of the internal correlations is the mean-squared distance among beadsj1 andj2,
06 j1 < j2 6 n:

R2(j1, j2, n) = 〈(rj2 − rj1)
2〉. (1.2)

Here the angle brackets denote the thermodynamic average over all configurations. Self-
similarity implies the scaling law

R2(j1, j2, n) = R2
e (j2 − j1)R(p, q) n→∞ (1.3)

where the ratios

p = j1

j2 − j1
q = n− j2

j2 − j1
(1.4)
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are kept fixed in taking the limit of long chains. The scaling functionR(p, q) varies only
weakly and stays close to 1 over the entire range 06 p, q 6∞. As a result, the mean-squared
internal distanceR2(j1, j2, n) almost coincides with the mean-squared end-to-end distance
R2
e (j2 − j1) of a chain of lengthj2 − j1. This is the meaning of self-similarity in the present

context.
In a good solvent the segments of the chain effectively repel each other. Then the fractal

nature also enforces long-range correlations among thedirectionsof the segment vectors

sj = rj − rj−1 j = 1, . . . , n. (1.5)

This becomes obvious if we write the end-to-end vector as

rn − r0 =
n∑
j=1

sj (1.6)

and use this form to calculateR2
e :

R2
e (n) = 〈(rn − r0)

2〉

=
n∑
j=1

s2
j + 2

∑
j1<j2

〈sj1 · sj2〉. (1.7)

The first contribution is proportional ton:
n∑
j=1

s2
j = `2n.

Here` is the average segment size. If the correlations〈sj1 · sj2〉 are of finite range along the
chain

〈sj1 · sj2〉 ∼ exp[−const|j2 − j1|]
then the second term on the rhs of equation (1.7) also yields a contribution proportional ton.
The resulting lawR2

e ∼ n is characteristic for a chain without self-interaction, as is found in
good approximation in a2-solvent at the2-temperature. In a good solvent the self-repulsion
enforces the power law (1.1),R2

e ∼ n2ν, 2ν > 1, which implies that the correlations〈sj1 · sj2〉
must be of long range, so that the second term in equation (1.7) asymptotically dominates over
the first. As the simplest hypothesis we may postulate a scaling law analogous to equation (1.3):

〈sj1 · sj2〉 = const|j2 − j1|2ν−2S(p, q); |j2 − j1| → ∞. (1.8)

If we substitute this ansatz into equation (1.7) and also assume that we can approximate the
chain configuration by a continuous space curve, then we find∑
j1<j2

〈sj1 · sj2〉 ∼
∫ n

0
dj2

∫ j2

0
dj1 (j2 − j1)

2ν−2S
(

j1

j2 − j1
,
n− j2

j2 − j1

)

= n2ν
∫ 1

0
dj̄2

∫ j̄2

0
dj̄1 (j̄2 − j̄1)

2ν−2S
(

j̄1

j̄2 − j̄1
,

1− j̄2

j̄2 − j̄1

)
(1.9)

where we introduced the notation

j̄k = jk

n
k = 1, 2.

Provided the integral exists, this reproduces the power law (1.1). This argument can also be
easily extended to show that the scaling form (1.3) of the internal distances is consistent with
the ansatz (1.8).
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However, the validity of the scaling hypothesis (1.8) is not obvious. We first mention a
more technical point of concern. A standard tool for the calculation of scaling functions is the
expansion in powers ofε = 4− d, i.e., in the deviation of the spatial dimensionality from the
upper critical dimensiond = 4. In four dimensions a self-repelling chain, up to logarithmic
corrections, behaves as a noninteracting chain, as can be seen, for instance, from the result
for the exponentν: 2ν = 1 + ε/8 + O(ε2). Now, integral (1.9) only exists by virtue of the
relation 2ν > 1. In strictε-expansion it therefore develops a singularity due to integration over
small distances|j2−j1| (‘ultraviolet’ singularity). The argument for the validity of the scaling
form, based on the result (1.9), therefore is not compatible with theε-expansion. Indeed, in
calculatingR2

e we have to absorb the ultraviolet singularity of the second term in equation (1.7)
into a renormalization of the first term, so that technically the separation ofR2

e into the two
terms of equation (1.7) is problematic.

As a related observation we note that equation (1.7), naively, would suggest a structure

R2
e = constn2ν + constn

to be compared with the well known correct result

R2
e ≈ constn2ν + constn2ν−νω + · · ·

whereω is a new exponent. In the correct result no term proportional ton appears.
A more fundamental problem is related to the very way in which scaling laws are

established. The basic tool is the renormalization group (RG), which relies on the dilation
invariance of the system on macroscopic scales. To establish this invariance, we must carry
through a sophisticated ‘renormalized’ form of a continuous chain limit. It is now well known
that for a continuous chain the Boltzmann weight in function space is concentrated on functions
r(j) which are continuous but not differentiable. Thus the analogue to a segment vector

sj =̂dr(j)

dj
dj

does not exist. This raises the delicate question whether thecorrelations〈sj1 · sj2〉 survive the
continuous chain limit. In technical terms, to establish the scaling law (1.8) we have to show
that the correlation function〈sj1 · sj2〉 is renormalizable.

In this paper we analyse this problem to the first nontrivial order (two loops). We show
the renormalizability and verify the scaling form (1.8), and use theε-expansion to calculate
the scaling functionS(p, q). We present results of a Monte Carlo simulation, which are in
good accord with our analytical results.

This paper is organized as follows. In section 2 we define the model, and present results
of unrenormalized perturbation theory for〈sj1 · sj2〉. Analysis of the ultraviolet singularities,
leading to renormalization and scaling laws, is carried out in section 3. Our result for the
scaling function is discussed in section 4, and the Monte Carlo work is presented in section 5,
where previous computer experiments are also considered. Section 6 contains a summary, and
detailed perturbative expressions are collected in the appendix.

To finish this introduction we review the history of the problem. To our knowledge the
scaling hypothesis (1.8) for〈sj1 · sj2〉 was first presented by Domb and Hioe [5]. Guessing
some ansatz for the scaling functionS(p, q) these authors used results such as equation (1.9)
to predict the swelling of the end-to-end distance, of the radius of gyration, or of internal
distances. Except for that early work we are not aware of any analytical analysis. Simulation
data have been published by Kremer and co-workers [6,7] and by Forniet al [8]. In [6,8] the
authors are predominantly interested in the correlations among the directions of different arms
in a star polymer. For a linear polymer they find contradictory results concerning the validity of
the power law〈sj1 ·sj2〉 ∼ |j2−j1|2ν−2. The authors of [7] focus on the dependence of segment
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direction correlations on the screening length in screened polyelectrolytes. Indeed, our work
may have some implications for this problem, since it implies firm results for the limiting case
of strong screening. We will comment on these previous simulations in section 5, showing that
despite apparent contradictions all the results are well compatible with our analytical theory.
We finally note that Miller [9] discussed direction correlations of segments averaged over their
position on the chain as a function of theirspatialdistance. This problem is, in some sense,
complementary to that treated in this work.

2. Unrenormalized perturbation theory

2.1. The model

We use the standard model of a discrete Gaussian chain with excluded volume interaction.
The potential energyV is written as

V = V0 + V2 (2.1)

whereV0 incorporates the connectivity of the chain.

V0 =
n∑
j=1

(rj − rj−1)
2

4`2
0

. (2.2)

The microscopic length̀ 0 is proportional to the average segment size. The two-body
interactionV2 is modelled as a pseudo-potential

e−V2 =
∏
j<j ′

′
[1− (4π`2

0)
d/2βeδ

d(rj − rj ′)] (2.3)

whereβe is the dimensionless excluded volume constant. The product extends over all pairs
of beads, and the prime indicates that in multiplying out the product we ignore all terms where
some segment indices are equal. This amounts to an ultraviolet regularization. The neglected
terms are of the same order as genuine many-body interactions, which are irrelevant for the
present model.

We define the partition function as

Z = (4π`2
0)
d/2

�

∫
D[rj ]e

−V (2.4)

where

D[rj ] =
n∏
j=0

ddrj

(4π`2
0)
d/2

(2.5)

and� denotes the volume of the system. The normalization factors in equations (2.4), (2.5)
are chosen such that the partition function of a noninteracting(βe = 0) chain reduces to 1 in
the thermodynamic limit:

Z0 = (4π`2
0)
d/2

�

∫
D[rj ]e

−V0 �→∞= 1.

To derive the correlations of the segment vectors we introduce a generating functional

Z{hj } = (4π`2
0)
d/2

�

∫
D[rj ]e

−V+
∑n

j=1 hj ·sj (2.6)

wheresj = rj − rj−1, equation (1.5). Taking derivatives with respect tohj we then find

〈sj1 · sj2〉 =
1

Z
∇hj1 · ∇hj2Z{hj }

∣∣∣∣
{hj=0}

. (2.7)
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We note in passing that the generating functionalZ{hj } for hj ≡ h independent ofj ,
describes a chain under external strain, and also up to the normalizationZ−1 equals the Fourier
transformed end-to-end distribution for momentumq = ih.

2.2. General structure of perturbation theory

For the present problem the adequate form of perturbation theory is the cluster expansion, which
is based on the expansion of the product (2.3) in powers ofβe. The resulting contributions can
be represented by Feynman diagrams, and here we recall the standard results [2], using the
partition function (2.4) as an example. A diagram contributing toµth order (µ loops) consists
of a straight line representing the polymer andµ broken lines representing the interactions.
The endpoints of the broken lines are attached to the polymer line and are referred to as ‘special
points’ in what follows. Special points of the same or different interactions are not allowed
to coincide, and the endpointsj = 0 or j = n are also considered as special points in this
context. The piece of the polymer line connecting two subsequent special points is called a
propagator line. The partition function is represented by the set of all diagrams which can be
constructed according to these rules.

To evaluate the contribution of a diagram we label the special points by segment indices
j, j ′, . . . , and we assign internal momentum variablesk,k′, . . . to the propagator lines. Since
we work in the thermodynamic limit�→∞, the variablesk,k′, . . . continuously range over
infinite d-dimensional momentum space. We have to respect momentum conservation at the
vertices, which means that for each vertex the sum of the incoming momenta equals the sum of
the outgoing momenta. (To make this precise we should assign to each propagator line some
direction of momentum flow.) Then the contribution of a diagram is evaluated as follows:

(i) A broken line yields a factor of−(4π`2
0)
d/2βe, and a propagator line of momentumk

connecting special pointsj andj ′, j ′ > j , stands for the propagator

G0(k, j
′ − j) = e−k

2`2
0(j
′−j). (2.8)

(ii) We integrate over all internal momenta:∫
ddk

(2π)d
. . . ≡

∫
k

. . .

and we sum allj, j ′, . . . over the chain, respecting their ordering along the chain as given
by the diagram. With our normalization no further factors occur.

To exemplify these rules we evaluate the partition function to first order. Figure 1 shows
the diagrammatic representation. The analytic result reads

Z = 1− (4π`2
0)
d/2βe

∑
0<j<j ′<n

∫
k

e−k
2`2

0(j
′−j) + O(β2

e ). (2.9)

It is very easy to derive the corresponding rules for the generating functionalZ{hj }
(equation (2.6)). The only modification concerns the propagator, which now takes the form

G0(k, j, j
′, {hj ′′ }) = exp

[
− `2

0

j ′∑
j ′′=j+1

(k − ihj ′′)
2

]
. (2.10)

Figure 1. Diagrams for the partition function to orderβe. The special points are indicated as heavy
dots.
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Figure 2. Diagrams of orderβe andβ2
e contributing toZ ′′.

We are interested in derivatives with respect toh. Assumingj < ĵ < j ′ we find

∇hĵG0(k, j, j
′, {hj ′′ }) = G0(k, j, ĵ , {hj ′′ })2i`2

0(k − ihĵ )G0(k, ĵ , j
′, {hj ′′ }). (2.11)

Diagrammatically we may represent this by a vertical stroke, which introduces the new
special pointĵ (see figure 2). To the integrand this stroke contributes a factor 2i`2

0(k − ihĵ ),

wherek is the momentum flowing through the special pointĵ . ĵ is not summed over, of course.
Thus

Z ′′ = ∇hj1 · ∇hj2Z{hj }|{hj=0} (2.12)

is represented by the set of all diagrams with strokes in segmentsj1, j2. Due to{hj = 0} the
propagator reduces to the form (2.8).

In the evaluation ofZ ′′ all diagrams in which zero momentum flows through one of the
pointsj1, j2 vanish trivially. By isotropy of the momentum integrations also all those diagrams
vanish in which the momenta flowing throughj1 andj2 are unrelated to each other. Physically,
this amounts to the observation that for a spatial configuration of the chain that contains a loop
which is closed by a pair of interacting segments and does not interact with the rest of the chain,
the segment directions in the loop are independent of the configuration of the outer parts of the
chain. These considerations reduce the number of diagrams to be considered. The remaining
contributions up to orderβ2

e are shown in figure 2. Note that no contribution of orderβ0
e occurs,

since the segment directions in a Gaussian chain are uncorrelated. Note further that diagrams
(A1, A2) etc, are connected by reflection symmetry of the chain.

2.3. Perturbative results

In orderβe only the first diagram of figure 2 contributes. It yields

Z ′′ = −(4π`2
0)
d/2βe(2i`2

0)
2
j1−1∑
j=1

n−1∑
j ′=j2+1

∫
k

k2e−k
2`2

0(j
′−j) + O(β2

e )

= 2dβe`
2
0J0 + O(β2

e ) (2.13)
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where

J0 =
j1−1∑
j=1

n−1∑
j ′=j2+1

(j ′ − j)−1−d/2. (2.14)

We are interested in the limit of long chainsn � 1 and also of long subchainsj2 − j1 � 1.
Then, to leading order we can evaluate the summations as integrals to find

J0 =
∫ j1

0
dj
∫ n

j2

dj ′ (j ′ − j)−1−d/2

= 4

d(d − 2)
[(j2 − j1)

1−d/2 + n1−d/2 − (n− j1)
1−d/2 − j1−d/2

2 ]. (2.15)

The corrections to this ‘continuous chain limit’ here are of relative order 1/(j2 − j1). The
result is finite for alld, which is due to the fact that the piecej2− j1� 1 acts as an ultraviolet
cut-off in the momentum integration.

To illustrate the features showing up in second order we evaluate diagramA1. The
Feynman rules yield

A1 = (4π`2
0)
dβ2

e (−4`4
0)

j1−3∑
m1=1

n−1∑
m2=j2+1

j1−2∑
m3=m1+1

j1−1∑
m4=m3+1

∫
k2

e−k
2
2`

2
0(m4−m3)

×
∫
k1

k2
1e−k

2
1`

2
0(m3−m1+m2−m4)

where we labelled the special points attached to the vertices bym1, . . . , m4, with the ordering
m1 < m3 < m4 < j1; j2 < m2. After momentum integration and redefinitionm4−m3→ m4

we can carry through the summation overm3 to find

A1 = −2d`2
0β

2
e

j1−3∑
m1=1

n−1∑
m2=j2+1

j1−m1−2∑
m4=1

(j1− 1−m4 −m1)m
−d/2
4 (m2 −m1−m4)

−1−d/2.

Here the summations cannot be directly evaluated as integrals, since them4-integral ford > 2
would be singular at the lower boundm4 = 0. To isolate the ‘dangerous’ terms we write

(j1− 1−m4 −m1)m
−d/2
4 (m2 −m1−m4)

−1−d/2 = (j1− 1−m1)(m2 −m1)
−1−d/2m−d/24

+(j1− 1−m1)[(m2 −m1−m4)
−1−d/2 − (m2 −m1)

−1−d/2]m−d/24

−m1−d/2
4 (m2 −m1−m4)

−1−d/2.

Now only the first term gives rise to concern, and summing this term overm4 we write

(j1− 1−m1)(m2 −m1)
−1−d/2

j1−m1−2∑
m4=1

m
−d/2
4

= (j1− 1−m1)(m2 −m1)
−1−d/2

[
ζ

(
d

2

)
−

∞∑
m4=j1−m1−1

m
−d/2
4

]
whereζ(x) denotes the Riemannζ -function. We thus find

A1 = −2d`2
0β

2
e

j1−3∑
m1=1

n−1∑
m2=j2+1

(j1− 1−m1)(m2 −m1)
−d/2−1ζ

(
d

2

)
+ Ã1

where all summations iñA1 can be evaluated as integrals, convergent ford < 4. The final
expression forÃ1 is given in the appendix.
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Similar expressions involvingζ( d2) arise from diagramsA2 to C2, which all involve a
‘mass insertion’, i.e., a nontrivial subdiagram which can be separated from the remainder of
the diagram by two cuts and which does not contain an external vertexj1 or j2. DiagramsD1

toH for d < 4 yield convergent integrals. Collecting all terms containingζ( d2) we find

Z ′′ = 2dβe`
2
0J0

[
1− βe

(
nζ

(
d

2

)
+ O(n0)

)]
+ Ã1 + · · · + H̃ (2.16)

where in the contribution proportional toζ
(
d
2

)
we neglected terms of relative order(j2−j1)

−1

or n−1.
Now the term proportional toζ

(
d
2

)
arises from the discrete microstructure of the chain. If

〈sj1 ·sj2〉 gives rise to a universal, i.e. microstructure-independent result, this term must cancel
against the normalizing denominatorZ−1. Indeed, evaluatingZ, (equation (2.9)), along the
lines sketched above, we find

Z = 1− βe
[
nζ

(
d

2

)
− 2

ε
(nε/2 − 1)− nε/2

1− ε/2 + O(n0)

]
+ O(β2

e ) (2.17)

whereε = 4−d. Thus the terms proportional tonζ( d2) cancel in the expansion ofZ ′′/Z. The
remaining terms of ordern0 could be absorbed into a redefinition of`0. However, it is more
in line with the present evaluation of the diagrams to consistently take the naive continuous
chain limit. This limit is defined as

`0→ 0

with

β̃e = `−ε0 βe ñ = `2
0n j̃1 = `2

0j1 etc (2.18)

kept fixed. Substituting these expressions intoJ0 (equation (2.15)) we find

J0 = `2−ε
0 J̃0 (2.19)

whereJ̃0 is given by equation (2.15) withn replaced bỹn, etc. The leading contribution toZ ′′
takes the form

Z ′′ = 2dβ̃e`
4
0J̃0 + O(β̃2

e ).

Combining equations (2.7), (2.16)–(2.19) we find

`−4
0 〈sj1 · sj2〉 = 2dβ̃eJ̃0

[
1− β̃eñε/2 4

ε(2− ε)
]

+ `−4
0 [Ã1 + · · · + H̃ ] + O(`ε0) + O(β̃3

e ). (2.20)

Inspecting the results for̃A1 to H̃ given in the appendix it is easily checked that the limits
lim`0→0(`

−4
0 Ã1) etc exist ford < 4 and yield finite functions of̃n, j̃1, j̃2. Equation (2.20) is

the consistent result of unrenormalized perturbation theory in the continuous chain limit. In
this derivation the cancellation of the terms∼nξ ( d2) was essential. Even if we do not take the
continuous chain limit this cancellation is a first hint that the segment direction correlations
show some degree of universality.

3. Renormalization and scaling

3.1. Generalities

To establish universal scaling laws we have to show that the theory is renormalizable, which
means that all the leading microstructure dependence can be absorbed into a redefinition
of the parameters of the theory. In the more physically intuitive discrete chain model the
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microstructure shows up in the dependence of the unrenormalized results on the segment size
`0. Taking ford < 4 the naive continuous chain limit`0→ 0 (‘dimensional regularization’),
we suppress the explicit̀0-dependence, and we shift the microstructure information to pole-
type singularities, which show up forε = 4− d → 0. Renormalization then has to eliminate
these singularities. For more detailed explanations we refer the reader to the literature [1,2].

Following the standard route we introduce a renormalized couplingu and renormalized
variablesnR, j1R, j2R via the formal relations

β̃e = `−εR uZu(u) (3.1i)

ñ = `2
RnRZn(u) (3.1ii)

j̃k = `2
RjkRZn(u) k = 1, 2. (3.1iii)

The length scalèR takes care of the spatial dimensions in the renormalized theory and can be
chosen arbitrarily. The renormalization factorsZu,Zn have to absorb the poles inε (minimal
subtraction). Following the conventions of [2] we use the explicit expressions

Zu(u) = 1

2

(
1 +

4

ε
u + O(u2)

)
Zn(u) = 1− u

ε
+ O(u2).

(3.2)

Using these relations to eliminate the bare parametersβ̃e, ñ, etc in favour of their
renormalized counterpartsu, nR, etc for properly normalized observables such asR2(j1, j2, n)

(equation (1.2)) we find power series inuwith coefficients which ford 6 4 are finite functions
of nR, etc. This is the statement of renormalizability, which holds to all orders of renormalized
perturbation theory.

3.2. Renormalizability of direction correlations

In appendix A.2 we have given the explicit form of the singular parts of the two-loop
contributions. Substituting these results into theε-expanded form of equation (2.20) we find

1

d
`−4

0 〈sj1 · sj2〉 = 2β̃eJ̃
(0)
0 (1 + O(ε))− 12

ε
β̃2
e J̃

(0)
0 + O(β̃2

e ε
0, β̃3

e ) (3.3)

where

J̃
(0)
0 =

1

2

[
1

j̃2 − j̃1

+
1

ñ
− 1

ñ− j̃1

− 1

j̃2

]
(3.4)

(cf equation (A.17)). Here we do not write out the lengthy expression for the regular
contribution in orderβ̃2

e . These are given in the next section in their shortest possible form.
With equations (3.1), (3.2) we find

1

d
`−4

0 〈sj1 · sj2〉 = `−2
R uJ0R

(
1 +

2

ε
u

)
+ O(uε, u2ε0, u3) (3.5)

where

J0R = 1

2

(
1

j2R − j1R
+

1

nR
− 1

nR − j1R
− 1

j2R

)
. (3.6)

Obviously, the simple replacement of unrenormalized by renormalized variables is not
sufficient to eliminate all the divergences. In view of the sum rule (1.7) this was to be indeed
expected. As is well known,R2

e renormalizes according to

R2
e (n, βe) = `2

RR
2
eR(nR, u).
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Naively renormalizing equation (1.7) we thus find

`2
RR

2
eR(nR, u) ∼

∫ nR

0
dj2R

∫ j2R

0
dj1R

`4
R

`4
0

Z2
n〈sj1 · sj2〉

where we used the replacement∑
j

→ `−2
0

∫
dj̃ → `2

R

`2
0

Zn

∫
djR.

This suggests defining the renormalized form of the direction correlation function as

〈sj1 · sj2〉R =
`2
R

`4
0

Z2
n〈sj1 · sj2〉. (3.7)

With equations (3.2), (3.5) we indeed find

1

d
〈sj1 · sj2〉R = uJ0R + O(uε, u2, ε0, u3) (3.8)

a result finite forε = 0. This verifies the renormalizability of the segment direction correlation
function to two-loop order.

3.3. RG mapping

The physical observables are the unrenormalized quantities, not their renormalized
counterparts. To calculate the observables from relations such as equation (3.7) we have
to know the mapping from unrenormalized to renormalized parameters, or theZ-factors,
equivalently. The expansions (3.2) cannot be used directly for this purpose, since they are
singular forε = 0, which is the remainder of a strong microstructure dependence in the
discrete chain model. This problem is solved by the RG, which exploits the fact that`R is an
arbitrary scale. Taking in equations (3.1) the logarithmic derivative with respect to`R, keeping
all unrenormalized quantities fixed, we derive RG flow equations of the form

−`R d

d`R
u = −εu + Ŵ (u) (3.9)

−`R d

d`R
lnZn = 2− 1

ν(u)
. (3.10)

The functionsŴ (u), ν(u) are known to be independent ofε and of microstructure effects,
and can be expanded in powers ofu. Furthermore, it turns out thatu for `R → ∞ reaches
a nontrivial fixed pointu∗ = O(ε), which is defined as the nontrivial zero of the rhs of
equation (3.9). The integrated form of the RG mapping, quite generally, can be written as

`R = f |1− f |− 1
ω Hu(f )s` (3.11i)

`2
0Z
−1
n = |1− f |

1
ω (

1
ν
−2)H(f ) ˜̀2 (3.11ii)

wheref is the renormalized coupling, normalized tou∗:

f = u

u∗
. (3.12)

The critical exponentsω, ν are defined as

ω = d

du
(Ŵ (u)− εu)|u=u∗

ν = ν(u∗)
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and the constants̃̀ , s` absorb the initial conditions needed in integrating the flow
equations (3.9), (3.10). The functionsHu(f ) andH(f ) are assumed to be regular forf 6= 0,
positive definite in the range of interest. We note that equations (3.11) involve the absolute
value|1− f | and thus give rise to two separate branches of the RG flow. The weak-coupling
branch 06 f < 1 connects the2-point (Gaussian fixed point)f = 0 to the nontrivial fixed
pointf = 1. The strong-coupling branchf > 1 runs off to some limit which is not accessible
to our perturbative theory.

The RG mapping (3.9), (3.10) and thus also the integrated form (3.11) is known most
precisely from higher-order calculations, combined with Borel resummation methods [10]. In
d = 3 the exponents take the values

ν = 0.588 ω = 0.80 (3.13)

whereas the functionsHu(f ),H(f )within the accuracy of the calculation can be parametrized
as

Hu(f ) = (1 + 0.824f )0.25

H(f ) = 1− 0.005f − 0.028f 2 + 0.022f 3.
(3.14)

The fixed-point coupling takes the value

u∗ = 0.364.

For later use we also note the result of low-orderε-expansion:

u∗ = ε

4
+

21

128
ε2 + O(ε3). (3.15)

In what follows we will use the high-order results (3.13), (3.14) for the RG mapping
(3.11) to evaluate our results ford = 3, even though we have calculated the scaling functions
only to two-loop order. Such a procedure involves no inconsistency since the two problems
of determining the RG mapping and calculating the scaling functions are conceptually well
separated. General experience shows that for quantitative calculations precise knowledge of
the RG mapping is essential, whereas the scaling functions do not show much structure and
can be approximated by a low-order calculation.

3.4. General scaling behaviour

The renormalized correlation function〈sj1 ·sj2〉R (equation (3.7)) is dimensionless and depends
on the renormalized variablesj1R, j2R, nR, f . We may write it in the form

1

d
〈sj1 · sj2〉R = SR(j2R − j1R, p, q, f ) (3.16)

where (cf equation (1.4))

p = j1R

j2R − j1R
≡ j1

j2 − j1
q = nR − j2R

j2R − j1R
≡ n− j2

j2 − j1
(3.17)

are RG-invariant combinations of segment variables.
We now exploit our freedom in choosing̀R to impose the condition

j2R − j1R = 1. (3.18)

Since to lowest orderR2(j1, j2, n) (equation (1.2)) is found as

R2(j1, j2, n) = 2d`2
R(j2R − j1R) + O(u)
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this implies that we takè2
R to be of the order of the mean-squared distance of the two segments

j1, j2, which is the most relevant scale in our problems. Combining equation (3.18) with
equation (3.1iii) we find

`2
R = `2

0(j2 − j1)Z
−1
n . (3.19)

Using equations (3.11) we can write this as

f 2|1− f |− 1
ων
H 2
u (f )

H(f )
=
˜̀2
s2
`

(j2 − j1) (3.20)

an equation which determinesf as function of

z̃ = ṽ(j2 − j1)
1/2 (3.21)

whereṽ = ˜̀/s`.
We first consider the excluded volume limitf → 1, which from equation (3.20) is attained

for j2 − j1→∞. Equations (3.19), (3.11) yield

|1− f |1/ω ∼ (j2 − j1)
−ν

`2
R ∼ (j2 − j1)

2ν

`2
0Z
−1
n ∼ (j2 − j1)

2ν−1.

Combining these results with equations (3.7), (3.16) we find

〈sj1 · sj2〉 ∼ (j2 − j1)
2ν−2S∗(p, q) (3.22)

where

S∗(p, q) = SR(1, p, q,1). (3.23)

This establishes the scaling behaviour (1.8) at the fixed point.
To formulate the general scaling law, which is valid also outside the excluded volume

limit, it is useful to construct a quantity in which the explicit factors of`2
R, Zn/`

2
0 occurring

in equation (3.7) drop out.Zn/`2
0 can be eliminated with the help of equation (3.19). The

remaining factors of̀ 2
R can be expressed in terms of the end-to-end distance of a chain of

lengthj2 − j1, which by virtue of the conditionj2R − j1R = 1 takes the form

R2
e (j2 − j1) = 2d`2

RR2
eR(f ). (3.24)

As a result we find

(j2 − j1)
2

R2
e (j2 − j1)

〈sj1 · sj2〉 = S̃(p, q, z̃) (3.25)

where

S̃(p, q, z̃) = 1

2

SR(p, q, f (z̃))
R2
eR(f (z̃))

(3.26)

is a universal scaling function. The only microstructure-dependent parameter left is the scale
ṽ occurring inz̃ (equation (3.21)). We recall that the functionf (z̃), which is defined as the
solution of equation (3.20), shows two branches, depending onf ≶ 1. Therefore,S̃(p, q, z̃)
also shows a two-branch structure. We furthermore note that in the excluded volume limit
z̃ → ∞, i.e. f → 1, S̃(p, q,∞) becomes fully universal, independent of any microscopic
parameters.
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4. Quantitative results for the scaling function

Evaluating the integrals of appendix A.1 and using the well known [2] resultR2
eR(f ) =

1 − ε
8f + O(ε2) we have calculated the scaling functionS̃(p, q, z̃) to second order of the

ε-expansion. As is well known the quantitative results depend somewhat on the precise choice
of the quantities to expand. In the present case the scaling functionS̃ contains a prefactor of
u = u∗f , and the result weakly depends on whether we use the strictε-expansion (3.15) for
u∗ or keep the prefactoru∗, takingu∗ = 0.364 in the evaluation ind = 3. To isolate this
ambiguity of the overall amplitude we write

S̃(p, q, z̃) = S̃∞(z̃)S̄(p, q, z̃) (4.1)

where

S̃∞(z̃) = S̃(∞,∞, z̃) (4.2)

absorbs the prefactor ofu∗. Here we assumed that the segment direction correlations in the
interior of an infinitely long chain(p→∞, q →∞) take a well defined limit. This is verified
by ourε-expansion results.

The amplitudeS̃∞(z̃) is found as

S̃∞(z̃) = 1
4u
∗f (1 + 3

4ε − 5
8εf + O(ε2)) (4.3i)

with the strictε-expansion taking the form (cf equation (3.15))

S̃∞(z̃) = ε

16
f

(
1 +

45

32
ε − 5

8
εf + O(ε2)

)
. (4.3ii)

At the fixed pointf = 1 and for three dimensions(ε = 1) the strictε-expansion (4.3ii)
yields S̃∞(z̃ → ∞) = 0.111, whereas the form (4.3i), evaluated withu∗ = 0.364, yields
S̃∞(z̃→∞) = 0.102. We thus find an ambiguity of the order of 10% in the overall amplitude
S̃∞. This ambiguity is not too large in view of the sizeable correction of orderε2. Note that
for f = 1 equation (4.3ii) yields

S̃∞(z̃) = ε

16

(
1 +

25

32
ε + O(ε2)

)
so that forε = 1 the O(ε2) contribution almost doubles this universal ratio. We note further
that a similar behaviour is observed for the interpenetration ratioψ∗, which also is proportional
to u∗.

Being normalized toS̄(∞,∞, z̃) = 1, the functionS̄(p, q, z̃) does not suffer from the
ambiguities of the overall amplitudẽS∞. Our full ε-expansion result is lengthy:

S̄(p, q, z̃) = 1 +
1

1 +p + q
− 1

1 +q
− 1

1 +p
+
ε

2

[
ln(1 +p + q)

1 +p + q
− ln(1 +q)

1 +q
− ln(1 +p)

1 +p

]
+
ε

8
f [g(p, q) + g(q, p)] (4.4)

where

g(p, q) = 1

2(1 +p + q)
− 1

2(1 +p)

−
(

1 +
1

4p
− 4

1 +p
+

2

(1 +p)2
+

1

2(1 +q)
+

3

4(1 +p + q)

)
lnp

+

(
5

2(1 +p)
+

1

4q
+

3

4(1 +p + q)

)
ln(1 +p)
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+

(
1

1 +p
− 3

2(1 +p + q)
− 1

2

)
ln(1 +p + q)

+
1

2

(
1− 3

1 +p + q
+

2

(1 +p + q)2

)
ln(p + q) +

1

4

(
1 +

1

p

)
ln(p + q + pq)

+
w1(p, q)

2(1 +q)(1 +p + q)
ln
w1(p, q)− p
w1(p, q) + p

− w2(p)

2(1 +p)
ln
w2(p)− p
w2(p) + p

+
w3(p, q)

2(1 +p)(1 +p + q)
ln

1 +p + 2q − w3(p, q)

1 +p + 2q +w3(p, q)

+
w3(p, q)

4q(1 +p + q)
ln
(1 +p)(p + 2q)− pw3(p, q)

(1 +p)(p + 2q) + pw3(p, q)

− w4(p)

2(1 +p)
ln

1 + 2p − w4(p)

1 + 2p +w4(p)
(4.5)

w1(p, q) = p1/2(4 +p + 4q)1/2 (4.6)

w2(p) = p1/2(4 +p)1/2 (4.7)

w3(p, q) = (1 +p)1/2(1 +p + 4q)1/2 (4.8)

w4(p) = (1 + 4p)1/2. (4.9)

We now consider this result in various limits.

(i) Segmentsj1, j2 well inside an infinitely long chain:

p = xα q = x

α
x →∞ 0< α <∞.

We find

S̄(p, q, z̃) = 1 +
1

x

(
α

1 +α2
− 1

α
− α

)
+
ε

2

ln x

x

[
α

1 +α2
− 1

α
− α + f

(
2

α
+ 2α − 3α

2(1 +α2)

)]
+ εO

(
1

x

)
+O(ε2). (4.10)

For x → ∞, implying p = j1/(j2 − j1) → ∞, q = (n − j2)/(j2 − j1) → ∞, the
influence of the end piecesj1 − 0, n − j2 vanishes, as expected. The approach to that
limit, however, is not trivial. The term lnx/x signals the existence of an anomalous
power lawS̄−1∼ x−1+O(ε), valid in the excluded volume limitf = 1. However, without
further independent information on the exponent or on the general structure of the scaling
function in the limitp, q →∞, an exponentiation of theε-expansion is ambiguous. From
the structure of equation (4.10) we can only say that there are at least two powers of the
form x−1+O(ε), but we cannot even deduce the sign of the leading terms. Below we will
find similar logarithms indicating anomalous power laws in the other limits considered.
Note that the corresponding feature is observed [4] for the internal distancesR2(j1, j2, n),
defined in equation (1.2).

(ii) One segment approaches a chain end:

p→ 0 q fixed.

We find

S̄(p, q, z̃) =
(

1− 1

(1 +q)2

)
p
(
1− ε

8
f lnp

)
+ εO(p) + O(ε2). (4.11)
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Figure 3. Normalized scaling functionS̄(p, q, z̃) in the
excluded volume limit̃z = ∞. Full curves: two-loop results;
broken curves: one-loop results. Thick lines:q = p, thin
curves:q = ∞. The inset magnifies the smallp behaviour.

Thus the segment direction correlation function vanishes asp1+O(ε), which implies that
towards the chain ends the segments rapidly forget about the direction of the segments in
the interior of the chain. It is the strain exerted by the end pieces, that leads to the direction
correlations. This is already obvious from the leading-order diagram in figure 2, which
suppresses configurations where the end pieces are close together.

(iii) The interior piece(j1, j2) approaches the total chain, i.e.j1→ 0, j2→ n:

p = xα q = x

α
x → 0 0< α <∞.

We find

S̄(p, q, z̃) = 2x2 − ε
8
f x2 ln x + εO(x2) + O(ε2) (4.12)

whereα drops out in the explicitly given terms. As expected,S̄ vanishes more rapidly
than in case (ii):S̄ ∼ x2+O(ε).

These results show that the segment direction correlations sensitively depend not only on
the distance along the chain(j2−j1)of the two segments, but also on their precise position on the
chain. This is illustrated quantitatively in figure 3, where we plotS̄(p,∞,∞) andS̄(p, p,∞)
as function ofp. We observe that in lowest-order approximation(O(ε)) the curves approach
the limiting valueS̄(∞,∞,∞) = 1 quite slowly from below, being governed by terms such as
1/(1+p) (cf equation (4.4)). The first correction(O(ε2)), however, again makes a large effect.
It considerably reduces the range, where end effects are important, so that the curves approach
the limiting regionS̄ ≈ 1 much more rapidly. Furthermore, the curves asymptotically tend to
the limit S̄ = 1 from above, a behaviour setting in very slowly for values ofp much larger
than those shown in figure 3. However, even in the O(ε2)-approximation there is a pronounced
variation ofS̄ in the rangep . 5, which is an important part of the range accessible to present
day computer experiments.

To avoid all misunderstanding we should stress that our result does not imply that〈sj1 ·sj2〉
increases as function ofj2− j1. Rather, this correlation function always decreases, due to the
prefactor(j2−j1)

2ν−2. It is only the ratioS̃ (equation (3.25)), or̄S, equivalently, that increases
or even overshoots forp→∞, q →∞. The overshooting is also seen in the analytical result
(4.10), which forp = q, i.e.α = 1, yields

S̄(p, p, z̃) = 1− 3

2p
+
ε

2

(
−3

2
+

13

4
f

)
lnp

p
.
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Table 1. Sample size in the simulations.

w Number of started tours Number of tours reachingNmax= 1000

0.095 108 9939 518
0.4 108 1165 995
1.0 108 221 382

For p → ∞ the lnp/p term dominates, and its coefficient is positive forf ≈ 1. Clearly,
higher-order calculations will modify this result, and since the exact asymptotic structure is
unknown it is not clear whether this overshooting is a valid feature. As pointed out in the
context of equation (4.10) above, theε-expansion result would also be perfectly consistent
with an exact expression which shows no overshooting.

We close this section by making some remark on the role of theε-expansion. For other
quantities we can often get equally good or even superior results for the scaling functions by
evaluating the renormalized perturbation theory directly ind = 3, avoiding theε-expansion
altogether. For quantities involving several scales this method works, provided only one of
the scales shows critical behaviour associated with some anomalous exponent. The other
scales must be ‘trivial’, allowing for a perturbative treatment in all limits of interest. (See [2]
for an more extensive discussion.) The direction correlations involve three scales, namely
R2
e (j2−j1), R

2
e (j1), R

2
e (n−j2), and, as found above, in limits such asR2

e (j1)/R
2
e (j2−j1)→ 0,

corresponding top → 0, there exist new power laws with unknown exponents. Such limits
would then be clearly mistreated by direct evaluation of the diagrams ind = 3. Furthermore,
it is found here that the limitp → ∞, q → ∞, if evaluated directly ind = 3, induces
new logarithmic singularities∼ lnp within the renormalized theory. These singularities are
specific ford = 3. For these reasons we here consistently stay within theε-expansion, using
also theε-expanded form (4.3ii) of S̃∞.

5. Comparison with Monte Carlo results

5.1. Simulation method

We measured the direction correlations in the Domb–Joyce model of a polymer chain. The
chain is modelled as a random walk on a cubic lattice, and each configuration is weighted by
a factor(1− w)n2/Z, wheren2 is the number of pairwise intersections andZ is the partition
function. A multiple intersection of orderm is counted asm(m− 1)/2 pair intersections. We
employed the PERM-algorithm developed by Grassberger [11] but in a slightly simplified form
that employs pruned enriched simple sampling. The algorithm essentially performs a random
walk in the space of chain lengths between the reflecting boundaries 0 andNmax and thereby
samples data for all chain lengths in the interval [0, Nmax]. The bunch of data accumulated
between starting from zero and reaching zero again (called tour) is highly correlated, but
different tours are uncorrelated. We therefore measure the sample quality in numbers of tours
rather than in numbers of walks.

For the values ofw, which we employed in our simulations, the characteristics of the
samples are given in table 1.

We use three different values ofw.

w = 1: self-avoiding walks. In this situation we are on the strong coupling branchf > 1.

w = 0.4: this value is known to be on the weak coupling branch, but very close to the excluded
volume limit f = 1. For the Domb–Joyce model the fixed point valuew∗ of the bare
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Table 2. Fit parameter̃v and resulting renormalized couplings.

w 1 0.4 0.095

ṽ 1.74 22.04 0.29
f (j2 − j1 = 11) 1.29 0.98 0.46
f (j2 − j1 = 101) 1.085 0.993 0.705

couplingw is known [12] to be in the interval 0.4< w∗ < 0.5.

w = 0.095: this value is deep on the weak coupling branchf < 1.

We first considered subchains of lengthsj2 − j1 = 11 or j2 − j1 = 101, embedded
as central parts into chains of lengthsn 6 1000, and we measured〈sj1 · sj2〉 as function of
q = p = j1/(j2− j1) as well asR2

e (j2− j1), so as to be able to construct the scaling function
S̃(p, q, z̃) (equation (3.25)). The resulting data for〈sj1 · sj2〉 scattered strongly and therefore,
in a new experiment we averaged the data over small intervals of(j2 − j1). Specifically,
‘j2 − j1 = 11’ in what follows stands forj2 − j1 ∈ {10, 11, 12}, whereas ‘j2 − j1 = 101’
meansj2 − j1 ∈ {91, . . . ,111}. This averaging induces a small systematic shift of the data,
which can be estimated with the help of the theoretical scaling function. It is found to be much
smaller than the residual scatter of the data, and this finding is confirmed by comparing the old
and the new runs. The maximal values ofq = p = j1/(j2 − j1) reached in our simulations
arep = 44.91(j2 − j1 = 11) andp = 4.40(j2 − j1 = 101), respectively.

5.2. Analysis of our results

We compare our numerical results with the scaling functionS̃, evaluated in the form (4.1):
S̃ = S̃∞ · S̄, with S̃∞ calculated in strictε-expansion (4.3ii). The only remaining nonuniversal
parameter is the combinatioñv = ˜̀/s`, which determines̃z according to equation (3.21):

z̃ = ṽ(j2 − j1)
1/2.

In turn, z̃ determines the renormalized coupling parameterf according to equation (3.20). In
previous work using the Domb–Joyce model [12] we have determined the parameterṽ = ṽ(w)
by analysing crossover results for quantities such as the end-to-end distance or the radius
of gyration. However, in that work we calculated the scaling functions by renormalized
perturbation theory evaluated directly in three dimensions, not using theε-expansion. The
choice of the renormalized theory, in the present case given by equation (3.18):j2R−j1R = 1,
was optimized for such a calculation, which yields a condition that differs from equation (3.18)
by a numerical factor. This in turn influencesṽ, which thus depends both on the bare coupling
w and on the precise form of the renormalized theory. Here we therefore had to carry through
a new fit. We determined good values off from the data forj2 − j1 = 11, and used these
values to calculatẽv according to equations (3.20), (3.21). We then used these valuesṽ to
calculatef for j2− j1 = 101. The results are presented in table 2. We note that the resulting
values off for weak coupling(f < 1) are very close to the values resulting from the theory
evaluated directly ind = 3. Only for strong coupling is the difference of the order of 10%,
which signals that we approach a region where low-order perturbation theory breaks down.

Using these parameter values we have evaluatedS̃(p, p, z̃), calculated to orderε2.
The results are compared with our Monte Carlo data in figure 4. Clearly, the agreement
is very good, in particular for weak couplingw0 = 0.095. For strong coupling for
j2 − j1 = 11, (j2 − j1)/n & 0.3 we see deviations which might be due to ‘irrelevant’
1/(j2 − j1)-corrections. More significant is the observation that the data show no indication
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Figure 4. Scaling functionsS̃(p, p, z̃) evaluated to order
ε2 as function of(j2− j1)/n = 1/(1 + 2p), compared with
Monte Carlo data: (a) j2−j1 = 11, (b) j2−j1 = 101. The
full curves and data are forw0 = 0.095, 0.4, 1 from below.
In (b) we included the orderε result forw0 = 0.4 (broken
curve), and forw0 = 0.4 or 1 we connected the data points
as a guide to the eye.

of overshooting for(j2 − j1)/n → 0, i.e.p = q → ∞. As we have pointed out above,
the overshooting of the theoretical scaling function may be an artifact of theε-expansion. To
appreciate the role of the O(ε2)-correction we recall that the lowest-order approximation, O(ε),
would be too small by a factor of about 2, as is clear from figure 3. In figure 4(b) we illustrated
this by including the O(ε)-result forw = 0.4. Keeping this in mind, we find the agreement
among the O(ε2)-theory and the data truly remarkable.

5.3. Consideration of previous simulation data

Batoulis and Kremer [6] measured direction correlations in self-avoiding chains on a fcc lattice,
for chain lengthsn = 60 or 240. Forniet al [8] carried through an off-lattice simulation for
chains of lengthsn = 472 or 80, interacting via a Lennard-Jones potential. In both simulations
one segment index(j2) was kept fixed and the other(j1) was varied, for the shorter chains
coming close to the chain end. Thus in these simulations our parameterp = j1/(j2 − j1)

varies, approaching zero for the shorter chains. For the longer chains the minimal value of
p is p ≈ 3 [6] or p ≈ 4 [8], respectively. Even if we follow the authors in assuming that
the systems are close to the excluded volume limit, we conclude that effective exponents
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Figure 5. log10〈sj1 · sj2〉 as a function of log10(j2 − j1),
for n = 472 or 80, respectively. The excluded volume limit
z̃ → ∞ (i.e. f = 1) has been taken. The broken line has
slope−0.95.

extracted from the data result from the superposition of the power law prefactor(j2− j1)
2ν−2

and the variation of the scaling functioñS(p, q, z̃). As is clear from figure 3, in the range
covered by the experiment the variation ofS̃ cannot be neglected, and since for fixedj2 > j1,
p = j1/(j2 − j1) decreases with increasing(j2 − j1), it will lead to an effective exponentµ,

〈sj1 · sj2〉 ∼ (j2 − j1)
−µ

which is larger than the theoretical value 2− 2ν = 0.824. This is indeed found, the values
quoted beingµ = 1.15 [6] orµ = 0.95 [8], respectively.

Since the values ofj2− j1 reached by the experiments are quite small, 1< j2− j1 . 30
or 1 < j2 − j1 . 20, respectively, a precise quantitative analysis of the data does not seem
appropriate. Using the values ofn, j2, j1 of these experiments we however have plotted

log10〈sj1 · sj2〉 ∼ (2ν − 2) log10(j2 − j1) + log10 S̃
as a function of log10(j2−j1). Figure 5 shows the results for the experiment of [8], in the range
4 6 j2 − j1 6 13 (n = 80) or 46 j2 − j1 6 20 (n = 472). Also given is a line indicating
an effective exponent ofµ = 0.95. This figure should be compared with the corresponding
part of figure 4 in [8]. The close similarity clearly shows that the data are consistent with
our theory. Carrying through the same analysis with valuesn, j2, j1 taken from [6], we find
a quite similar picture, but with an effective exponentµ ≈ 1.0–1.1 extracted for the longer
chains. Within the uncertainties of the data this is quite consistent withµ = 1.15 quoted by
the authors (see also the footnote in [8]). The data for the shorter chain, however, do not show
the strong decrease expected forj1→ 0, which was verified in our simulations and was also
found in [8]. We are unable to comment on this.

We finally consider some data of Micka and Kremer [7], which are taken for an off-lattice
bead-and-spring chain, interacting via a Debye–Hückel potential. The range of the potential
was varied from a strongly screened to an essentially Coulomb-like interaction, for chain
lengths up ton ≈ 256. Among the measured quantities are the direction correlations, plotted
as ln〈sj1 · sj2〉 against(j2− j1). The rationale behind this semilogarithmic plot is the standard
assumption that in a polyelectrolyte the direction correlations behave as in a wormlike chain:

〈sj1 · sj2〉 ∼ e−`(j2−j1)/Lp (5.1)

whereLp is the persistence length. A straight portion in such plots therefore allows one to
extractLp. We should immediately note that such an ansatz, if at all valid, for a screened
potential can hold only in some intermediate range ofn, since the chain for any nonvanishing
amount of screening in the limitn → ∞ is expected to reach the excluded volume limit as
described in this paper. The concept of a finite persistence length breaks down, the observed
power law decay of〈sj1 · sj2〉 essentially corresponding toLp →∞.

In figure 6 we have plotted ln〈sj1 · sj2〉 as function ofj2 − j1 for the central piece of
the chain, assuming to be in the excluded volume limit. To make a link with the work of [7]
we used values ofn = 128, 256, but we should immediately note that this plot is somewhat
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Figure 6. ln〈sj1 · sj2〉 as a function ofj2 − j1 (excluded
volume limit), evaluated forn = 128, 256 (full curves). The
broken curve gives the infinite chain limit. The ‘data points’
are forN = 256, Debye screening parameterκ = 0.48 (dots),
κ = 0.16 (circles). These points are taken from figure 1.18
of [13], with a nonuniversal vertical shift included.

redundant: the scaling law (3.22) shows that the quantity plotted is in fact a universal function
of (j2 − j1)/n, up to a nonuniversal microstructure-dependent shift. On inspecting figure 6
the most important observation is that the asymptotic power law and the finite chain effects
conspire to produce almost-straight intermediate parts of the curves. Following the procedure
of [7], from this part we could extract a ‘persistence length’Lp,eff , which here would be a
fairly meaningless effective quantity. However, it is also important to note that for a given
chain length the resulting values ofLp,eff are bounded from above by the average slope of
the asymptoten → ∞ in the appropriate range ofj2 − j1. The observation of larger values
of Lp,eff then indicates significant effects of the larger range of the potential, which in the
terminology of the present theory would be called nonuniversal ‘microstructure’ effects.

For the largest values of the screening parameterκ, namelyκ = 0.48, 0.16, the work
of [7] is clearly in the range where the effective persistence length should not be interpreted
in terms of polyelectrolyte theories. To illustrate this, in figure 6 we included some averaged
data points, extracted from figure 1.18 of [13], where a more extensive compilation of the data
is given. This shall only demonstrate that the observed slope is well in the range predicted by
excluded-volume theory. A more detailed evaluation of the data is not feasible, since clearly
for fixedn the renormalized couplingf will be κ-dependent, which makes any further analysis
along the lines followed here quite ambiguous.

Data for smaller screening parametersκ 6 0.04 can be found in [7, 13]. These clearly
show the influence of the larger range of the potential. The effective persistence length exceeds
the limit set by the present theory. It is clear, however, that simple theories of the screening
dependence of the persistence length can only be valid ifLp is large compared withLp,eff as
extracted from the present theory in the range of chain lengths considered. In analysing such
problems the results of standard excluded volume theory should always be kept in mind.

6. Conclusions

If direction correlations among segmentsj1 andj2 can be defined in the renormalized theory
and turn out to be multiplicatively renormalizable, then they obey scaling with the asymptotic
power law behaviour∼(j2− j1)

2ν−2. This is guaranteed by the sum rule relating the direction
correlations to the end-to-end distance. We have verified the multiplicative renormalizability
to two-loop order, which strongly supports the validity of the scaling law. Furthermore, we
have constructed a crossover scaling function, which at the fixed point is independent of any
microstructure parameters.

Calculating this function to orderε2 we find a strong variation of the correlations with
the position on the chain of the segments considered. If both end pieces(0, j1), (j2, n) of the
chain become infinitely long, then the scaling function saturates. However, it vanishes with
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vanishing length of some end piece: the endsegments hold no information on the segment
directions deeper inside the chain. This strong position dependence persists up to lengths
of the end pieces of order 5(j2 − j1). Therefore, with present day facilities, any attempt to
check the asymptotic power law∼(j2 − j1)

2ν−2 in a computer experiment must take care
of the variation of the scaling function. Inspecting published data we have shown that the
numerically found effective exponents are consistently explained by the theory. They result
from the superposition of the asymptotic power law with the variation of the scaling function.

The new simulations presented in this work are not aimed at checking the power law but
the scaling function. Since we measure effects which are small on the scale set by the segment
size`, the data scatter considerably. Nevertheless, we can state very good agreement with the
theory. This is the more surprising since the O(ε2)-correction is large. Theory and experiment
fit together only if we include the O(ε2)-terms.

Our results have consequences for an analysis of the persistence length, which is commonly
defined not by the exponential law (5.1), but by the projection of the end-to-end vector on some
segment direction:

Lp(j) = 1

`
〈sj · (rn − r0)〉.

Usually the direction of the first segmentj = 1 is taken, and our analysis immediately shows
thatLp(1) in three dimensions should be of microscopic size. (In two dimensionsLp(1) is
less trivial, see [14].) Forj = n

2, however,Lp(n2) is expected to diverge in the limit of long
chains,n → ∞ : Lp(n2) ∼ n2ν−1 ≈ n0.176 (d = 3). This immediately follows from a sum
rule analogous to equation (1.7). Furthermore, we have found that from some intermediate
range of the direction correlation function we may extract an effective persistence length
(equation (5.1)), which, however, has no fundamental meaning. All this discussion shows that
the concept of a persistence length, which is widely used in the theory of polyelectrolytes, is
quite delicate. A more detailed analysis ofLp(j) in the framework of excluded volume theory
is currently underway.
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Appendix

A.1. Unrenormalized two-loop contributions

Where necessary, we extract additive contributions∼ ξ( d2), and we evaluate the remainder as
integrals for generald, 2 < d < 4. The leading corrections are then of relative ordern−ε/2,
transforming intoñ−ε/2`ε0 ∼ `ε0 in the continuous chain limit̀0 → 0. Somewhat lengthy
calculations yield the following results for the diagrams of figure 2, integrated for generald

as far as possible:

A1(j1, j2, n) = −2d`2
0β

2
e ξ

(
d

2

) j1−3∑
m1=1

n−1∑
m2=j2+1

(j1− 1−m1)(m2 −m1)
− d

2−1 + Ã1(j1, j2, n)

(A1)

Ã1(j1, j2, n) = 2

d − 2
`2

0β
2
e

{
8j2−d/2

1

d − 2
[(n− j1)

1−d/2 − (j2 − j1)
1−d/2]
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+4
∫ j1

0
dx x1−d/2

[
j1((j2 − x)−d/2 − (n− x)−d/2)

+
4− d
d − 2

((j2 − x)1−d/2 − (n− x)1−d/2)
]}

(A2)

A2(j1, j2, n) ≡ A1(n− j2, n− j1, n) (A3)

by reflection symmetry of the chain

B(j1, j2, n) = −2d`2
0β

2
e ξ

(
d

2

)
(j2 − j1− 1)J0 + B̃(j1, j2, n) (A4)

B̃(j1, j2, n) = 8

d − 2
`2

0β
2
e

{
2

d − 2
(j2 − j1)

2−d/2((n− j2 + j1)
1−d/2

−(n− j2)
1−d/2 − j1−d/2

1 ) +
4− d
d − 2

02(2− d/2)
0(4− d) (j2 − j1)

3−d

+
∫ j2−j1

0
dx x1−d/2[(n− x)1−d/2 − (n− j1− x)1−d/2 − (j2 − x)1−d/2

−(j2 − j1)((n− x)−d/2 − (n− j1− x)−d/2 − (j2 − x)−d/2)]
}

(A5)

C1(j1, j2, n) = −2d`2
0β

2
e ξ

(
d

2

) j1−1∑
m1=3

n−1∑
m2=j2+1

(m1− 1)(m2 −m1)
−1−d/2 + C̃1(j1, j2, n) (A6)

C̃1(j1, j2, n) = 16

(4− d)(d − 2)
`2

0β
2
e

∫ j1

0
dx x2−d/2[(j2 − x)−d/2 − (n− x)−d/2] (A7)

C2(j1, j2, n) ≡ C1(n− j2, n− j1, n) by symmetry (A8)

D1(j1, j2, n) ≡ D̃1(j1, j2, n) = 8

d − 2
`2

0β
2
e

{
2

4− d
∫ j1

0
dx (n− x)−d/2(j1− x)2−d/2

+
∫ j1

0
dx

1

n− x
∫ j1

x

dy [(y − x)1−d/2((n− y)1−d/2 − (n− x)1−d/2)

−(y(n− x)− (y − x)2)1−d/2]

}
− (n→ j2). (A9)

Here the contribution(n→ j2) results by replacingn byj2 in the explicitly given contribution:

D2(j1, j2, n) ≡ D1(n− j2, n− j1, n) by symmetry (A10)

E(j1, j2, n) ≡ Ẽ(j1, j2, n) = 8

(4− d)(d − 2)
`2

0β
2
e

{
d

∫ n−j2+j1

0
dx x3−d/2(n− x)−1−d/2

+d
∫ n−j2+j1

j1

dx x2−d/2(n− x)−d/2
(

1− n− j1

n− x
)

+d
∫ n−j2+j1

n−j2

dx x2−d/2(n− x)−d/2
(

1− j2

n− x
)

+2
∫ j1

0
dx x2−d/2((n− x)−d/2 − (j2 − x)−1/2)

+2
∫ n−j2

0
dx x2−d/2((n− x)−d/2 − (n− j1− x)−d/2)

}
(A11)

F(j1, j2, n) ≡ F̃ (j1, j2, n) = 8

(d − 2)
`2

0β
2
e

∫ j1

0
dx
∫ n−j2

0
dy

1

x + y
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·{[(y + x)(n− y − j1 + x)− x2]1−d/2 − [(y + x)(n− y)− x2]1−d/2

−[(y + x)(j2 − j1 + x)− x2]1−d/2 + [(y + x)j2 − x2]1−d/2} (A12)

G1(j1, j2, n) ≡ G̃1(j1, j2, n) = 8

d − 2
`2

0β
2
e

∫ j1

0
dx x

×
{∫ j2−j1+x

x

dy

y2
[(n− j1 + 2x − y)y − x2]1−d/2

−
∫ j1

x

dy

y2
[(n− j1 + x)y − x2]1−d/2

+
∫ j2

j2−j1+x

dy

y2
[(n− j2 + x)y − x2]1−d/2

−
∫ j2

j1

dy

y2
[(n + x − y)y − x2]1−d/2

}
− (n→ j2) (A13)

G2(j1, j2, n) ≡ G1(n− j2, n− j1, n) by symmetry (A14)

H(j1, j2, n) ≡ H̃ (j1, j2, n) = 8

d − 2
`2

0β
2
e

∫ j2−j1

0
dx x

×
{∫ j1+x

x

dy

y2
[(n− j1)y − x2]1−d/2 −

∫ j2

j2−j1

dy

y2
[(n− j2 + x)y − x2]1−d/2

+
∫ j2

j1+x

dy

y2
[(n− y + x)y − x2]1−d/2

−
∫ j2−j1

x

dy

y2
[(n− j1− y + x)y − x2]1−d/2

}
− (n→ j2). (A15)

A.2. ε-expansion

Here we expand the diagrammatic contributions in powers ofε. The essential part of the
one-loop contribution (first diagram of figure 2) is̃J0, which from equations (2.19), (2.18),
(2.15) is found as

J̃0 = 4

(4− ε)(2− ε) [(j̃2 − j̃1)
ε/2−1 + ñε/2−1− (ñ− j̃1)

ε/2−1− j̃ ε/2−1
2 ]

= J̃ (0)0 + εJ̃ (1)0 + O(ε2) (A16)

where

J̃
(0)
0 = 1

2[(j̃2 − j̃1)
−1 + ñ−1− (ñ− j̃1)

−1− j̃−1
2 ] (A17)

J̃
(1)
0 =

1

4

[
ln(j̃2 − j̃1)

j̃2 − j̃1

+
ln ñ

ñ
− ln(ñ− j̃1)

ñ− j̃1

− ln j̃2

j̃2

]
+

3

8
J̃
(0)
0 . (A18)

The two-loop diagrams are only needed up to orderε0, since the renormalized coupling itself
turns out to be of orderε. ConsideringÃ1 (equation (A2)) with the help of equation (2.18) we
find

`−4
0 Ã1(j1, j2, n) = 2

2− ε β̃
2
e

{
8j̃ ε/21

2− ε [(ñ− j̃1)
ε/2−1− (j̃2 − j̃1)

ε/2−1]

+4
∫ j̃1

0
dx xε/2−1[j̃1((j̃2 − x)ε/2−2 − (ñ− x)ε/2−2)
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+
ε

2− ε ((j̃2 − x)ε/2−1− (ñ− x)ε/2−1)]

}
. (A19)

This shows a 1/ε-contribution, due to integration over smallx. This easily is extracted by
partial integration, with the final result

`−4
0 Ã1(j1, j2, n) = 8

ε
β̃2
e

(
j̃1

j̃2
2

− j̃1

ñ2

)
+ 4β̃2

e

[
2
j̃1

j̃2
2

ln j̃2 − 2
j̃1

ñ2
ln ñ +

j̃1

ñ2
ln(ñ− j̃1)

+j̃1 ln j̃1

(
1

j̃2
2

− 1

ñ2

)
− j̃1

j̃2
2

ln(j̃2 − j̃1)

]
. (A20)

In the same way we can analyse the other contributions. In fact, it turns out that to orderε0

all integrals can be evaluated analytically. Since, however, the resulting expressions for the
regular contributions are lengthy, here we only give the singular parts. In the final expression for
the scaling function a considerable part of the regular contributions from individual diagrams
cancels, and we give our full result in the main text (equations (4.3)–(4.9)).

With the singular parts made explicit, our results for the diagrammatic contributions read

`−4
0 Ã2(j1, j2, n) = 8

ε
β̃2
e

(
ñ− j̃2

(ñ− j̃1)2
− ñ− j̃2

ñ2

)
+ regular (A21)

`−4
0 B̃(j1, j2, n) = 8

ε
β̃2
e

[
1

ñ
− 1

ñ− j̃1

− 1

j̃2

− (j̃2 − j̃1)

(
1

ñ2
− 1

j̃2

− 1

(ñ− j̃1)2

)]
+ regular

(A22)

`−4
0 C̃1(j1, j2, n) = 16

ε
β̃2
e J̃

(0)
0 + regular (A23)

`−4
0 C̃2(j1, j2, n) = 16

ε
β̃2
e J̃

(0)
0 + regular (A24)

`−4
0 D̃1(j1, j2, n) = −16

ε
β̃2
e J̃

(0)
0 + regular (A25)

`−4
0 D̃2(j1, j2, n) = −16

ε
β̃2
e J̃

(0)
0 + regular (A26)

`−4
0 Ẽ(j1, j2, n) = −16

ε
β̃2
e J̃

(0)
0 + regular (A27)

`−4
0 F̃ (j1, j2, n) = −16

ε
β̃2
e J̃

(0)
0 + regular. (A28)

The remaining diagramsG1,G2, andH yield only regular contributions.
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